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In our world there is no form of matter more astonishing than the liv-
ing cell: tiny, fragile, marvelously intricate, continually made afresh, yet 
preserving in its DNA a record of information dating back more than 
three billion years, to a time when our planet had barely cooled from 
the hot materials of the nascent solar system. Ceaselessly re-engineered 
and diversifed by evolution, extraordinarily versatile and adaptable, the 
cell retains a complex core of self-replicating chemical machinery that is 
shared and endlessly repeated by every living organism on the face of the 
Earth—in every animal, every leaf, every bacterium in a piece of cheese, 
every yeast in a vat of wine.

Curiosity, if nothing else, should drive us to study cell biology; we need to 
understand cell biology to understand ourselves. But there are practical 
reasons, too, why cell biology should be a part of everyone’s education. 
We are made of cells, we feed on cells, and our world is made habit-
able by cells. The challenge for scientists is to deepen our knowledge of 
cells and fnd new ways to apply it. All of us, as citizens, need to know 
something of the subject to grapple with the modern world, from our 
own health affairs to the great public issues of environmental change, 
biomedical technologies, agriculture, and epidemic disease.

Cell biology is a big subject, and it has links with almost every other branch 
of science. The study of cell biology therefore provides a great scientifc 
education. However, as the science advances, it becomes increasingly 
easy to become lost in detail, distracted by an overload of information 
and technical terminology. In this book we therefore focus on providing 
a digestible, straightforward, and engaging account of only the essential 
principles. We seek to explain, in a way that can be understood even by 
a reader approaching biology for the frst time, how the living cell works: 
to show how the molecules of the cell—especially the protein, DNA, and 
RNA molecules—cooperate to create this remarkable system that feeds, 
responds to stimuli, moves, grows, divides, and duplicates itself.

The need for a clear account of the essentials of cell biology became 
apparent to us while we were writing Molecular Biology of the Cell (MBoC), 
now in its ffth edition. MBoC is a large book aimed at advanced under-
graduates and graduate students specializing in the life sciences or 
medicine. Many students and educated lay people who require an intro-
ductory account of cell biology would fnd MBoC too detailed for their 
needs. Essential Cell Biology (ECB), in contrast, is designed to provide the 
fundamentals of cell biology that are required by anyone to understand 
both the biomedical and the broader biological issues that affect our lives.

This fourth edition has been extensively revised. We have brought every 
part of the book up to date, with new material on regulatory RNAs, 
induced pluripotent stem cells, cell suicide and reprogramming, the 
human genome, and even Neanderthal DNA. In response to student 
feedback, we have improved our discussions of photosynthesis and DNA 
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repair. We have added many new fgures and have updated our cover-
age of many exciting new experimental techniques—including RNAi, 
optogenetics, the applications of new DNA sequencing technologies, and 
the use of mutant organisms to probe the defects underlying human dis-
ease. At the same time, our “How We Know” sections continue to present 
experimental data and design, illustrating with specifc examples how 
biologists tackle important questions and how their experimental results 
shape future ideas.

As before, the diagrams in ECB emphasize central concepts and are 
stripped of unnecessary details. The key terms introduced in each chapter 
are highlighted when they frst appear and are collected together at the 
end of the book in a large, illustrated glossary. 

A central feature of the book is the many questions that are presented in 
the text margins and at the end of each chapter. These are designed to 
provoke students to think carefully about what they have read, encourag-
ing them to pause and test their understanding. Many questions challenge 
the student to place the newly acquired information in a broader biologi-
cal context, and some have more than one valid answer. Others invite 
speculation. Answers to all the questions are given at the end of the book; 
in many cases these provide a commentary or an alternative perspective 
on material presented in the main text.

For those who want to develop their active grasp of cell biology further, 
we recommend Molecular Biology of the Cell, Fifth Edition: A Problems 
Approach, by John Wilson and Tim Hunt. Though written as a compan-
ion to MBoC, this book contains questions at all levels of diffculty and 
contains a goldmine of thought-provoking problems for teachers and 
students. We have drawn upon it for some of the questions in ECB, and 
we are very grateful to its authors.

The explosion of new imaging and computer technologies continues 
to provide fresh and spectacular views of the inner workings of living 
cells. We have captured some of this excitement in the new Essential Cell 
Biology website, located at www.garlandscience.com/ECB4-students. This 
site, which is freely available to anyone in the world with an interest in 
cell biology, contains over 150 video clips, animations, molecular struc-
tures, and high-resolution micrographs—all designed to complement the 
material in individual book chapters. One cannot watch cells crawling, 
dividing, segregating their chromosomes, or rearranging their surface 
without a sense of wonder at the molecular mechanisms that underlie 
these processes. For a vivid sense of the marvel that science reveals, it 
is hard to match the narrated movie of DNA replication. These resources 
have been carefully designed to make the learning of cell biology both 
easier and more rewarding.

Those who seek references for further reading will fnd them on the ECB 
student and instructor websites. But for the very latest reviews in the cur-
rent literature, we suggest the use of web-based search engines, such as 
PubMed (www.ncbi.nlm.nih.gov) or Google Scholar (scholar.google.com).

As with MBoC, each chapter of ECB is the product of a communal 
effort, with individual drafts circulating from one author to another. In 
addition, many people have helped us, and these are credited in the 
Acknowledgments that follow. Despite our best efforts, it is inevitable 
that there will be errors in the book. We encourage readers who fnd them 
to let us know at science@garland.com, so that we can correct these 
errors in the next printing.

Preface         



vii

Acknowledgments

The authors acknowledge the many contributions of 
professors and students from around the world in the 
creation of this fourth edition. In particular, we are grate-
ful to the students who participated in our focus groups; 
they provided invaluable feedback about their experi-
ences using the book and our multimedia, and many of 
their suggestions were implemented in this edition.

We would also like to thank the professors who helped 
organize the student focus groups at their schools: 
Nancy W. Kleckner at Bates College, Kate Wright and 
Dina Newman at Rochester Institute of Technology, 
David L. Gard at University of Utah, and Chris Brandl 
and Derek McLachlin at University of Western Ontario. 
We greatly appreciate their hospitality and the opportu-
nity to learn from their students.  

We also received detailed reviews from many instruc-
tors who used the third edition, and we would like to 
thank them for their contributions: Devavani Chatterjea, 
Macalester College; Frank Hauser, University of 
Copenhagen; Alan Jones, University of North Carolina at 
Chapel Hill; Eugene Mesco, Savannah State University; 
M. Scott Shell, University of California Santa Barbara; 
Grith Lykke Sørensen, University of Southern Denmark; 
Marta Bechtel, James Madison University; David 
Bourgaize, Whittier College; John Stephen Horton, 
Union College; Sieirn Lim, Nanyang Technological 
University; Satoru Kenneth Nishimoto, University of 
Tennessee Health Science Center; Maureen Peters, 
Oberlin College; Johanna Rees, University of Cambridge; 
Gregg Whitworth, Grinnell College; Karl Fath, Queens 
College, City University of New York; Barbara Frank, 
Idaho State University; Sarah Lundin-Schiller, Austin 
Peay State University; Marianna Patrauchan, Oklahoma 
State University; Ellen Rosenberg, University of British 
Columbia; Leslie Kate Wright, Rochester Institute of 
Technology; Steven H. Denison, Eckerd College; David 
Featherstone, University of Illinois at Chicago; Andor 
Kiss, Miami University; Julie Lively, Sewanee, The 
University of the South; Matthew Rainbow, Antelope 
Valley College; Juliet Spencer, University of San Francisco; 
Christoph Winkler, National University of Singapore; 
Richard Bird, Auburn University; David Burgess, Boston 

College; Elisabeth Cox, State University of New York, 
College at Geneseo; David L. Gard, University of Utah; 
Beatrice Holton, University of Wisconsin Oshkosh; Glenn 
H. Kageyama, California State Polytechnic University, 
Pomona; Jane R. Dunlevy, University of North Dakota; 
Matthias Falk, Lehigh University. We also want to thank 
James Hadfeld of Cancer Research UK Cambridge 
Institute for his review of the methods chapter.

Special thanks go to David Morgan, a coauthor of MBoC, 
for his help on the signaling and cell division chapters. 

We are very grateful, too, to the readers who alerted us 
to errors they had found in the previous edition. 

Many staff at Garland Science contributed to the crea-
tion of this book and made our work on it a pleasure. 
First of all, we owe a special debt to Michael Morales, 
our editor, who coordinated the whole enterprise. He 
organized the initial reviewing and the focus groups, 
worked closely with the authors on their chapters, 
urged us on when we fell behind, and played a major 
part in the design, assembly, and production of Essential 
Cell Biology student website. Monica Toledo managed 
the fow of chapters through the book development 
and production process, and oversaw the writing of 
the accompanying question bank. Lamia Harik gave 
editorial assistance. Nigel Orme took original draw-
ings created by author Keith Roberts and redrew them 
on a computer, or occasionally by hand, with great 
skill and fair. To Matt McClements goes the credit for 
the graphic design of the book and the creation of the 
chapter-opener sculptures. As in previous editions, 
Emma Jeffcock did a brilliant job in laying out the whole 
book and meticulously incorporating our endless cor-
rections. Adam Sendroff and Lucy Brodie gathered user 
feedback and launched the book into the wide world. 
Denise Schanck, the Vice President of Garland Science, 
attended all of our writing retreats and orchestrated 
everything with great taste and diplomacy. We give our 
thanks to everyone in this long list.

Last but not least, we are grateful, yet again, to our col-
leagues and our families for their unfagging tolerance 
and support. 



Page left intentionally blank



ix

The teaching and learning resources for instructors and 
students are available online. The instructor’s resources 
are password protected and available only to quali-
fed instructors. The student resources are available to  
everyone. We hope these resources will enhance student 
learning, and make it easier for instructors to prepare 
dynamic lectures and activities for the classroom.

Instructor Resources
Instructor Resources are available on the Garland 
Science Instructor’s Resource Site, located at www.
garlandscience.com/instructors. The website provides 
access not only to the teaching resources for this book 
but also to all other Garland Science textbooks. Qualifed 
instructors can obtain access to the site from their sales 
representative or by emailing science@garland.com.

Art of Essential Cell Biology, Fourth Edition
The images from the book are available in two conven-
ient formats: PowerPoint® and JPEG. They have been 
optimized for display on a computer. Figures are search-
able by fgure number, fgure name, or by keywords used 
in the fgure legend from the book.

Figure-Integrated Lecture Outlines
The section headings, concept headings, and fgures 
from the text have been integrated into PowerPoint 
presentations. These will be useful for instructors who 
would like a head start creating lectures for their course. 
Like all of our PowerPoint presentations, the lecture 
outlines can be customized. For example, the content 
of these presentations can be combined with videos and 
questions from the book or “Question Bank,” in order to 
create unique lectures that facilitate interactive learning. 

Animations and Videos
The 130+ animations and videos that are available to 
students are also available on the Instructor’s Resource 
site in two formats. The WMV-formatted movies are 
created for instructors who wish to use the movies in 
PowerPoint presentations on Windows® computers; the 
QuickTime-formatted movies are for use in PowerPoint 
for Apple computers or Keynote® presentations. The 
movies can easily be downloaded to your computer 
using the “download” button on the movie preview page.

Question Bank
Written by Linda Huang, University of Massachusetts, 
Boston, and Cheryl D. Vaughan, Harvard University 
Division of Continuing Education, the revised and 
expanded question bank includes a variety of question 
formats: multiple choice, fll-in-the-blank, true-false, 
matching, essay, and challenging “thought” questions. 
There are approximately 60–70 questions per chapter, 
and a large number of the multiple-choice questions 
will be suitable for use with personal response systems 
(that is, clickers). The Question Bank was created with 
the philosophy that a good exam should do much more 
than simply test students’ ability to memorize informa-
tion; it should require them to refect upon and integrate 
information as a part of a sound understanding. It pro-
vides a comprehensive sampling of questions that can 
be used either directly or as inspiration for instructors to 
write their own test questions. 

References
Adapted from the detailed references of Molecular 
Biology of the Cell, and organized by the table of con-
tents for Essential Cell Biology, the “References” provide 
a rich compendium of journal and review articles for ref-
erence and reading assignments. The “References” PDF 
document is available on both the instructor and student 
websites. 

Medical Topics Guide
This document highlights medically relevant topics cov-
ered throughout the book, and will be particularly useful 
for instructors with a large number of premedical, health 
science, or nursing students. 

Media Guide
This document overviews the multimedia available for 
students and instructors and contains the text of the 
voice-over narration for all of the movies. 

Blackboard® and LMS Integration
The movies, book images, and student assessments that 
accompany the book can be integrated into Blackboard 
or other learning management systems. These resources 
are bundled into a “Common Cartridge” that facilitates 
bulk uploading of textbook resources into Blackboard and 
other learning management systems. The LMS Common 
Cartridge can be obtained on a DVD from your sales rep-
resentative or by emailing science@garland.com.

Resources for Instructors and Students
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Student Resources

The resources for students are available on the Essential 
Cell Biology Student Website, located at www.garland
science.com/ECB4-students.

Animations and Videos
There are over 130 movies, covering a wide range of cell 
biology topics, which review key concepts in the book 
and illuminate the cellular microcosm. 

Student Self-Assessments
The website contains a variety of self-assessment tools 
to help students. 

•	 Each chapter has a multiple-choice quiz to test 
basic reading comprehension. 

•	 There are also a number of media assessments that 
require students to respond to specifc questions 
about movies on the website or fgures in the book. 

•	 Additional concept questions complement the 
questions available in the book. 

•	 “Challenge” questions are included that provide a 
more experimental perspective or require a greater 
depth of conceptual understanding. 

Cell Explorer
This application teaches cell morphology through inter-
active micrographs that highlight important cellular 
structures. 

Flashcards
Each chapter contains a set of fashcards, built into the 
website, that allow students to review key terms from 
the text.

Glossary
The complete glossary from the book is available on the 
website and can be searched or browsed.

References
A set of references is available for each chapter for fur-
ther reading and exploration. 
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What does it mean to be living? Petunias, people, and pond scum are all 
alive; stones, sand, and summer breezes are not. But what are the fun-
damental properties that characterize living things and distinguish them 
from nonliving matter?

The answer begins with a basic fact that is taken for granted now, but 
marked a revolution in thinking when frst established 175 years ago. 
All living things (or organisms) are built from cells: small, membrane-
enclosed units flled with a concentrated aqueous solution of chemicals 
and endowed with the extraordinary ability to create copies of them-
selves by growing and then dividing in two. The simplest forms of life are 
solitary cells. Higher organisms, including ourselves, are communities of 
cells derived by growth and division from a single founder cell. Every ani-
mal or plant is a vast colony of individual cells, each of which performs 
a specialized function that is regulated by intricate systems of cell-to-cell 
communication.

Cells, therefore, are the fundamental units of life. Thus it is to cell biol-
ogy—the study of cells and their structure, function, and behavior—that 
we must look for an answer to the question of what life is and how it 
works. With a deeper understanding of cells, we can begin to tackle the 
grand historical problems of life on Earth: its mysterious origins, its stun-
ning diversity produced by billions of years of evolution, and its invasion 
of every conceivable habitat. At the same time, cell biology can provide 
us with answers to the questions we have about ourselves: Where did we 
come from? How do we develop from a single fertilized egg cell? How is 
each of us similar to—yet different from—everyone else on Earth? Why do 
we get sick, grow old, and die?

chapter ONE 1
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Cells

Cells Under the 
Microscope

The Prokaryotic Cell

The Eukaryotic Cell

Model Organisms
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In this chapter, we begin by looking at the great variety of forms that cells 
can show, and we take a preliminary glimpse at the chemical machinery 
that all cells have in common. We then consider how cells are made vis-
ible under the microscope and what we see when we peer inside them. 
Finally, we discuss how we can exploit the similarities of living things to 
achieve a coherent understanding of all forms of life on Earth—from the 
tiniest bacterium to the mightiest oak. 

Unity and Diversity of Cells
Cell biologists often speak of “the cell” without specifying any particu-
lar cell. But cells are not all alike; in fact, they can be wildly different. 
Biologists estimate that there may be up to 100 million distinct species 
of living things on our planet. Before delving deeper into cell biology, we 
must take stock: What does a bacterium have in common with a butter-
fy? What do the cells of a rose have in common with those of a dolphin? 
And in what ways do the plethora of cell types within an individual mul-
ticellular organism differ?

Cells Vary Enormously in Appearance and Function
Let us begin with size. A bacterial cell—say a Lactobacillus in a piece of 
cheese—is a few micrometers, or μm, in length. That’s about 25 times 
smaller than the width of a human hair. A frog egg—which is also a single 
cell—has a diameter of about 1 millimeter. If we scaled them up to make 
the Lactobacillus the size of a person, the frog egg would be half a mile 
high.

Cells vary just as widely in their shape (Figure 1–1). A typical nerve cell in 
your brain, for example, is enormously extended; it sends out its electrical 
signals along a fne protrusion that is 10,000 times longer than it is thick, 
and it receives signals from other nerve cells through a mass of shorter 
processes that sprout from its body like the branches of a tree (see Figure 
1–1A). A Paramecium in a drop of pond water is shaped like a submarine 
and is covered with thousands of cilia—hairlike extensions whose sinu-
ous beating sweeps the cell forward, rotating as it goes (Figure 1–1B). 
A cell in the surface layer of a plant is squat and immobile, surrounded 

Figure 1–1 Cells come in a variety of shapes and sizes. Note the very different scales of these micrographs. (A) Drawing of a single 
nerve cell from a mammalian brain. This cell has a huge branching tree of processes, through which it receives signals from as many 
as 100,000 other nerve cells. (B) Paramecium. This protozoan—a single giant cell—swims by means of the beating cilia that cover its 
surface. (C) Chlamydomonas. This type of single-celled green algae is found all over the world—in soil, fresh water, oceans, and even 
in the snow at the top of mountains. The cell makes its food like plants do—via photosynthesis—and it pulls itself through the water 
using its paired fagella to do the breaststroke. (D) Saccharomyces cerevisiae. This yeast cell, used in baking bread, reproduces itself 
by a process called budding. (E) Helicobacter pylori. This bacterium—a causative agent of stomach ulcers—uses a handful of whiplike 
fagella to propel itself through the stomach lining. (A, copyright Herederos de Santiago Ramón y Cajal, 1899; B, courtesy of Anne 
Fleury, Michel Laurent, and André Adoutte; C, courtesy of Brian Piasecki; E, courtesy of Yutaka Tsutsumi.)

25 µm 5 µm100 µm 10 µm
(B) (E)(D)(A) (C)
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by a rigid box of cellulose with an outer waterproof coating of wax. A 
neutrophil or a macrophage in the body of an animal, by contrast, crawls 
through tissues, constantly pouring itself into new shapes, as it searches 
for and engulfs debris, foreign microorganisms, and dead or dying cells. 
And so on.

Cells are also enormously diverse in their chemical requirements. Some 
require oxygen to live; for others this gas is deadly. Some cells consume 
little more than air, sunlight, and water as their raw materials; others 
need a complex mixture of molecules produced by other cells. 

These differences in size, shape, and chemical requirements often refect 
differences in cell function. Some cells are specialized factories for the 
production of particular substances, such as hormones, starch, fat, latex, 
or pigments. Others are engines, like muscle cells that burn fuel to do 
mechanical work. Still others are electricity generators, like the modifed 
muscle cells in the electric eel. 

Some modifcations specialize a cell so much that they spoil its chances 
of leaving any descendants. Such specialization would be senseless 
for a cell that lived a solitary life. In a multicellular organism, however, 
there is a division of labor among cells, allowing some cells to become 
specialized to an extreme degree for particular tasks and leaving them 
dependent on their fellow cells for many basic requirements. Even the 
most basic need of all, that of passing on the genetic instructions of the 
organism to the next generation, is delegated to specialists—the egg and 
the sperm.

Living Cells All Have a Similar Basic Chemistry
Despite the extraordinary diversity of plants and animals, people have 
recognized from time immemorial that these organisms have something 
in common, something that entitles them all to be called living things. 
But while it seemed easy enough to recognize life, it was remarkably dif-
fcult to say in what sense all living things were alike. Textbooks had to 
settle for defning life in abstract general terms related to growth, repro-
duction, and an ability to respond to the environment.

The discoveries of biochemists and molecular biologists have provided 
an elegant solution to this awkward situation. Although the cells of all 
living things are infnitely varied when viewed from the outside, they 
are fundamentally similar inside. We now know that cells resemble one 
another to an astonishing degree in the details of their chemistry. They are 
composed of the same sorts of molecules, which participate in the same 
types of chemical reactions (discussed in Chapter 2). In all organisms, 
genetic information—in the form of genes—is carried in DNA molecules. 
This information is written in the same chemical code, constructed out 
of the same chemical building blocks, interpreted by essentially the same 
chemical machinery, and replicated in the same way when an organism 
reproduces. Thus, in every cell, the long DNA polymer chains are made 
from the same set of four monomers, called nucleotides, strung together 
in different sequences like the letters of an alphabet to convey informa-
tion. In every cell, the information encoded in the DNA is read out, or 
transcribed, into a chemically related set of polymers called RNA. A sub-
set of these RNA molecules is in turn translated into yet another type of 
polymer called a protein. This fow of information—from DNA to RNA 
to protein—is so fundamental to life that it is referred to as the central 
dogma (Figure 1–2). 

The appearance and behavior of a cell are dictated largely by its  
protein molecules, which serve as structural supports, chemical catalysts, 

PROTEIN

RNA
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protein synthesis
TRANSLATION

RNA synthesis
TRANSCRIPTIONnucleotides

DNA synthesis
REPLICATION
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amino acids

Figure 1–2 In all living cells, genetic 
information fows from DNA to RNA 
(transcription) and from RNA to protein 
(translation)—a sequence known as 
the central dogma. The sequence of 
nucleotides in a particular segment of 
DNA (a gene) is transcribed into an RNA 
molecule, which can then be translated into 
the linear sequence of amino acids of a 
protein. Only a small part of the gene, RNA, 
and protein are shown.

Question 1–1

“Life” is easy to recognize but 
diffcult to defne. According to one 
popular biology text, living things:
1.  Are highly organized compared 
to natural inanimate objects.
2.  Display homeostasis, maintaining 
a relatively constant internal 
environment.
3.  Reproduce themselves.
4.  Grow and develop from simple 
beginnings.
5.  Take energy and matter from the 
environment and transform it.
6.  Respond to stimuli.
7.  Show adaptation to their 
environment.
Score a person, a vacuum cleaner, 
and a potato with respect to these 
characteristics.
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molecular motors, and so on. Proteins are built from amino acids, and all 
organisms use the same set of 20 amino acids to make their proteins. 
But the amino acids are linked in different sequences, giving each type 
of protein molecule a different  three-dimensional shape, or conforma-
tion, just as different sequences of letters spell different words. In this 
way, the same basic biochemical machinery has served to generate the 
whole gamut of life on Earth (Figure 1–3). A more detailed discussion 
of the structure and function of proteins, RNA, and DNA is presented in 
Chapters 4 through 8.

If cells are the fundamental unit of living matter, then nothing less than 
a cell can truly be called living. Viruses, for example, are compact pack-
ages of genetic information—in the form of DNA or RNA—encased in 
protein but they have no ability to reproduce themselves by their own 
efforts. Instead, they get themselves copied by parasitizing the reproduc-
tive machinery of the cells that they invade. Thus, viruses are chemical 
zombies: they are inert and inactive outside their host cells, but they can 
exert a malign control over a cell once they gain entry.

All Present-Day Cells Have Apparently Evolved from the 
Same Ancestral Cell
A cell reproduces by replicating its DNA and then dividing in two, passing 
a copy of the genetic instructions encoded in its DNA to each of its daugh-
ter cells. That is why daughter cells resemble the parent cell. However, 
the copying is not always perfect, and the instructions are occasionally 
corrupted by mutations that change the DNA. For this reason, daughter 
cells do not always match the parent cell exactly. 

Mutations can create offspring that are changed for the worse (in that 
they are less able to survive and reproduce), changed for the better (in 
that they are better able to survive and reproduce), or changed in a neutral 
way (in that they are genetically different but equally viable). The struggle 
for survival eliminates the frst, favors the second, and tolerates the third. 
The genes of the next generation will be the genes of the survivors. 

On occasion, the pattern of descent may be complicated by sexual repro-
duction, in which two cells of the same species fuse, pooling their DNA. 
The genetic cards are then shuffed, re-dealt, and distributed in new com-
binations to the next generation, to be tested again for their ability to 
promote survival and reproduction. 

These simple principles of genetic change and selection, applied repeat-
edly over billions of cell generations, are the basis of evolution—the 
process by which living species become gradually modifed and adapted 
to their environment in more and more sophisticated ways. Evolution 
offers a startling but compelling explanation of why present-day cells 
are so similar in their fundamentals: they have all inherited their genetic 
instructions from the same common ancestor. It is estimated that this 
ancestral cell existed between 3.5 and 3.8 billion years ago, and we must 

(A) (B) (C) (D)
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Figure 1–3 All living organisms are 
constructed from cells. A colony 
of bacteria, a butterfy, a rose, and a 
dolphin are all made of cells that have a 
fundamentally similar chemistry and operate 
according to the same basic principles. 
(A, courtesy of Janice Carr; C, courtesy of 
the John Innes Foundation; D, courtesy of 
Jonathan Gordon, IFAW.)

Question 1–2

Mutations are mistakes in the DNA 
that change the genetic plan from 
the previous generation. Imagine 
a shoe factory. Would you expect 
mistakes (i.e., unintentional changes) 
in copying the shoe design to lead 
to improvements in the shoes 
produced? Explain your answer.
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suppose that it contained a prototype of the universal machinery of all 
life on Earth today. Through a very long process of mutation and natural 
selection, the descendants of this ancestral cell have gradually diverged 
to fll every habitat on Earth with organisms that exploit the potential of 
the machinery in an endless variety of ways.

Genes Provide the Instructions for Cell Form, Function, 
and Complex Behavior
A cell’s genome—that is, the entire sequence of nucleotides in an organ-
ism’s DNA—provides a genetic program that instructs the cell how to 
behave. For the cells of plant and animal embryos, the genome directs 
the growth and development of an adult organism with hundreds of dif-
ferent cell types. Within an individual plant or animal, these cells can be 
extraordinarily varied, as we discuss in Chapter 20. Fat cells, skin cells, 
bone cells, and nerve cells seem as dissimilar as any cells could be. Yet 
all these differentiated cell types are generated during embryonic develop-
ment from a single fertilized egg cell, and all contain identical copies of 
the DNA of the species. Their varied characters stem from the way that 
individual cells use their genetic instructions. Different cells express dif-
ferent genes: that is, they use their genes to produce some proteins and 
not others, depending on their internal state and on cues that they and 
their ancestor cells have received from their surroundings—mainly sig-
nals from other cells in the organism.

The DNA, therefore, is not just a shopping list specifying the molecules 
that every cell must make, and a cell is not just an assembly of all the 
items on the list. Each cell is capable of carrying out a variety of biologi-
cal tasks, depending on its environment and its history, and it selectively 
uses the information encoded in its DNA to guide its activities. Later in 
this book, we will see in detail how DNA defnes both the parts list of the 
cell and the rules that decide when and where these parts are to be made.

Cells Under the Microscope

Today, we have the technology to decipher the underlying principles 
that govern the structure and activity of the cell. But cell biology started 
without these tools. The earliest cell biologists began by simply looking 
at tissues and cells, and later breaking them open or slicing them up, 
attempting to view their contents. What they saw was to them profoundly 
baffing—a collection of tiny and scarcely visible objects whose relation-
ship to the properties of living matter seemed an impenetrable mystery. 
Nevertheless, this type of visual investigation was the frst step toward 
understanding cells, and it remains essential in the study of cell biology.

Cells were not made visible until the seventeenth century, when the 
microscope was invented. For hundreds of years afterward, all that 
was known about cells was discovered using this instrument. Light 
microscopes use visible light to illuminate specimens, and they allowed 
biologists to see for the frst time the intricate structure that underpins all 
living things. 

Although these instruments now incorporate many sophisticated 
improvements, the properties of light itself set a limit to the fneness of 
detail they reveal. Electron microscopes, invented in the 1930s, go beyond 
this limit by using beams of electrons instead of beams of light as the 
source of illumination, greatly extending our ability to see the fne details 
of cells and even making some of the larger molecules visible individ-
ually. These and other forms of microscopy remain vital tools in the 
modern cell biology laboratory, where they continue to reveal new and 
sometimes surprising details about the way cells are built and how they 
operate.

Cells Under the Microscope         
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The Invention of the Light Microscope Led to the 
Discovery of Cells
The development of the light microscope depended on advances in the 
production of glass lenses. By the seventeenth century, lenses were pow-
erful enough to make out details invisible to the naked eye. Using an 
instrument equipped with such a lens, Robert Hooke examined a piece 
of cork and in 1665 reported to the Royal Society of London that the cork 
was composed of a mass of minute chambers. He called these cham-
bers “cells,” based on their resemblance to the simple rooms occupied 
by monks in a monastery. The name stuck, even though the structures 
Hooke described were actually the cell walls that remained after the living 
plant cells inside them had died. Later, Hooke and his Dutch contempo-
rary Antoni van Leeuwenhoek were able to observe living cells, seeing 
for the frst time a world teeming with motile microscopic organisms.

For almost 200 years, such instruments—the frst light microscopes—
remained exotic devices, available only to a few wealthy individuals. It 
was not until the nineteenth century that microscopes began to be widely 
used to look at cells. The emergence of cell biology as a distinct science 
was a gradual process to which many individuals contributed, but its off-
cial birth is generally said to have been signaled by two publications: one 
by the botanist Matthias Schleiden in 1838 and the other by the zoolo-
gist Theodor Schwann in 1839. In these papers, Schleiden and Schwann 
documented the results of a systematic investigation of plant and animal 
tissues with the light microscope, showing that cells were the universal 
building blocks of all living tissues. Their work, and that of other nine-
teenth-century microscopists, slowly led to the realization that all living 
cells are formed by the growth and division of existing cells—a principle 
sometimes referred to as the cell theory (Figure 1–4). The implication that 

50 µm

(A)

(B)
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Figure 1–4 New cells form by growth and division of existing cells. (A) In 1880, Eduard Strasburger drew a living plant cell 
(a hair cell from a Tradescantia fower), which he observed dividing into two daughter cells over a period of 2.5 hours. (B) A comparable 
living plant cell photographed recently through a modern light microscope. (B, courtesy of Peter Hepler.)
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living organisms do not arise spontaneously but can be generated only 
from existing organisms was hotly contested, but it was fnally confrmed 
in the 1860s by an elegant set of experiments performed by Louis Pasteur.

The principle that cells are generated only from preexisting cells and 
inherit their characteristics from them underlies all of biology and gives 
the subject a unique favor: in biology, questions about the present are 
inescapably linked to questions about the past. To understand why 
present-day cells and organisms behave as they do, we need to under-
stand their history, all the way back to the misty origins of the frst cells 
on Earth. Charles Darwin provided the key insight that makes this his-
tory comprehensible. His theory of evolution, published in 1859, explains 
how random variation and natural selection gave rise to diversity among 
organisms that share a common ancestry. When combined with the cell 
theory, the theory of evolution leads us to view all life, from its beginnings 
to the present day, as one vast family tree of individual cells. Although 
this book is primarily about how cells work today, we will encounter the 
theme of evolution again and again.

Light Microscopes Allow Examination of Cells and Some of 
Their Components
If you cut a very thin slice from a suitable plant or animal tissue and view 
it using a light microscope, you will see that the tissue is divided into 
thousands of small cells. These may be either closely packed or separated 
from one another by an extracellular matrix, a dense material often made 
of protein fbers embedded in a polysaccharide gel (Figure 1–5). Each cell 
is typically about 5–20 μm in diameter. If you have taken care of your 
specimen so that its cells remain alive, you will be able to see particles 
moving around inside individual cells. And if you watch patiently, you 
may even see a cell slowly change shape and divide into two (see Figure 
1–4 and a speeded-up video of cell division in a frog embryo in Movie 1.1).

To see the internal structure of a cell is diffcult, not only because the 
parts are small, but also because they are transparent and mostly color-
less. One way around the problem is to stain cells with dyes that color 
particular components differently (see Figure 1–5). Alternatively, one can 
exploit the fact that cell components differ slightly from one another in 

Figure 1–5 Cells form tissues in plants 
and animals. (A) Cells in the root tip of a 
fern. The nuclei are stained red, and each 
cell is surrounded by a thin cell wall (light 
blue). (B) Cells in the urine-collecting ducts 
of the kidney. Each duct appears in this 
cross section as a ring of closely packed 
cells (with nuclei stained red ). The ring is 
surrounded by extracellular matrix, stained 
purple. (A, courtesy of James Mauseth; 
B, from P.R. Wheater et al., Functional 
Histology, 2nd ed. Edinburgh: Churchill 
Livingstone, 1987. With permission from 
Elsevier.) 

Cells Under the Microscope         

Question 1–3

You have embarked on an ambitious 
research project: to create life in a 
test tube. You boil up a rich mixture 
of yeast extract and amino acids 
in a fask along with a sprinkling 
of the inorganic salts known to be 
essential for life. You seal the fask 
and allow it to cool. After several 
months, the liquid is as clear as 
ever, and there are no signs of life. 
A friend suggests that excluding 
the air was a mistake, since most 
life as we know it requires oxygen. 
You repeat the experiment, but this 
time you leave the fask open to the 
atmosphere. To your great delight, 
the liquid becomes cloudy after a 
few days and under the microscope 
you see beautiful small cells that 
are clearly growing and dividing. 
Does this experiment prove that 
you managed to generate a novel 
life-form? How might you redesign 
your experiment to allow air 
into the fask, yet eliminate the 
possibility that contamination is 
the explanation for the results? 
(For a ready-made answer, look up 
the classic experiments of Louis 
Pasteur.)

(B)

ECB4 e1.05/1.05
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50 µm 50 µm
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refractive index, just as glass differs in refractive index from water, caus-
ing light rays to be defected as they pass from the one medium into the 
other. The small differences in refractive index can be made visible by 
specialized optical techniques, and the resulting images can be enhanced 
further by electronic processing.

The cell thus revealed has a distinct anatomy (Figure 1–6A). It has 
a sharply defned boundary, indicating the presence of an enclosing 
membrane. A large, round structure, the nucleus, is prominent in the 
middle of the cell. Around the nucleus and flling the cell’s interior is the  
cytoplasm, a transparent substance crammed with what seems at frst to 
be a jumble of miscellaneous objects. With a good light microscope, one 
can begin to distinguish and classify some of the specifc components in 
the cytoplasm, but structures smaller than about 0.2 μm—about half the 
wavelength of visible light—cannot normally be resolved; points closer 
than this are not distinguishable and appear as a single blur.

In recent years, however, new types of fuorescence microscopes have 
been developed that use sophisticated methods of illumination and elec-
tronic image processing to see fuorescently labeled cell components in 
much fner detail (Figure 1–6B). The most recent super-resolution fu-
orescence microscopes, for example, can push the limits of resolution 
down even further, to about 20 nanometers (nm). That is the size of a 
single ribosome, a large macromolecular complex composed of 80–90 
individual proteins and RNA molecules.

The Fine Structure of a Cell Is Revealed by Electron 
Microscopy
For the highest magnifcation and best resolution, one must turn to an 
electron microscope, which can reveal details down to a few nano-
meters. Cell samples for the electron microscope require painstaking 
preparation. Even for light microscopy, a tissue often has to be fxed (that 
is, preserved by pickling in a reactive chemical solution), supported by 
embedding in a solid wax or resin, cut or sectioned into thin slices, and 
stained before it is viewed. For electron microscopy, similar procedures 
are required, but the sections have to be much thinner and there is no 
possibility of looking at living, wet cells.

cytoplasm plasma membrane nucleus

40 µm 10 µm 
(A) (B)

ECB4 e1.07/1.06

Figure 1–6 Some of the internal 
structures of a living cell can be seen 
with a light microscope. (A) A cell taken 
from human skin and grown in culture was 
photographed through a light microscope 
using interference-contrast optics (see Panel 
1–1, pp. 10–11). The nucleus is especially 
prominent. (B) A pigment cell from a frog, 
stained with fuorescent dyes and viewed 
with a confocal fuorescence microscope 
(see Panel 1–1). The nucleus is shown in 
purple, the pigment granules in red, and 
the microtubules—a class of flaments built 
from protein molecules in the cytoplasm—in 
green. (A, courtesy of Casey Cunningham; 
B, courtesy of Stephen Rogers and the 
Imaging Technology Group of the Beckman 
Institute, University of Illinois, Urbana.)
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When thin sections are cut, stained, and placed in the electron microscope, 
much of the jumble of cell components becomes sharply resolved into 
distinct organelles—separate, recognizable substructures with special-
ized functions that are often only hazily defned with a light microscope. 
A delicate membrane, only about 5 nm thick, is visible enclosing the cell, 
and similar membranes form the boundary of many of the organelles 
inside (Figure 1–7A, B). The membrane that separates the interior of the 
cell from its external environment is called the plasma membrane, while 
the membranes surrounding organelles are called internal membranes. 
All of these membranes are only two molecules thick (as discussed in 
Chapter 11). With an electron microscope, even individual large mole-
cules can be seen (Figure 1–7C).

The type of electron microscope used to look at thin sections of tissue is 
known as a transmission electron microscope. This is, in principle, simi-
lar to a light microscope, except that it transmits a beam of electrons 
rather than a beam of light through the sample. Another type of electron 
microscope—the scanning electron microscope—scatters electrons off the 
surface of the sample and so is used to look at the surface detail of cells 
and other structures. A survey of the principal types of microscopy used 
to examine cells is given in Panel 1–1 (pp. 10–11).

nucleusplasma membrane 

endoplasmic reticulum 

peroxisome

lysosome

mitochondrion

2 µm 

(A)

ribosomes

2 µm 

mitochondria
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50 nm
(A) (C)

(B)

Figure 1–7 The fne structure of a cell 
can be seen in a transmission electron 
microscope. (A) Thin section of a liver cell 
showing the enormous amount of detail that 
is visible. Some of the components to be 
discussed later in the chapter are labeled; 
they are identifable by their size and shape. 
(B) A small region of the cytoplasm at higher 
magnifcation. The smallest structures that 
are clearly visible are the ribosomes, each 
of which is made of 80–90 or so individual 
large molecules. (C) Portion of a long, 
threadlike DNA molecule isolated from a 
cell and viewed by electron microscopy.  
(A and B, courtesy of Daniel S. Friend;  
C, courtesy of Mei Lie Wong.) 
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